Prove that

Question:

Let $f(x)=x+7$ and $g(x)=x-7, x \in$ R. Find $(f \circ g)(7)$

 

Solution:

To find: (f o g) (7)

Formula used: $f \circ g=f(g(x))$

Given: (i) $f(x)=x+7$

(ii) $g(x)=x-7$

We have,

$f \circ g=f(g(x))=f(x-7)=[(x-7)+7]$

$\Rightarrow X$

(f o g) $(x)=x$

$(f \circ g)(7)=7$

Ans). (f o g) (7) =7

 

Leave a comment