Prove that
$\left(\cos ^{4} x+\sin ^{4} x\right)=\frac{1}{2}\left(2-\sin ^{2} 2 x\right)$
To Prove: $\cos ^{4} x+\sin ^{4} x=\frac{1}{2}\left(2-\sin ^{2} 2 x\right)$
Taking LHS,
$=\cos ^{4} x+\sin ^{4} x$
Adding and subtracting $2 \sin ^{2} x \cos ^{2} x$, we get
$=\cos ^{4} x+\sin ^{4} x+2 \sin ^{2} x \cos ^{2} x-2 \sin ^{2} x \cos ^{2} x$
We know that,
$a^{2}+b^{2}+2 a b=(a+b)^{2}$
$=\left(\cos ^{2} x+\sin ^{2} x\right)-2 \sin ^{2} x \cos ^{2} x$
$=(1)-2 \sin ^{2} x \cos ^{2} x\left[\because \cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$=1-2 \sin ^{2} x \cos ^{2} x$
Multiply and divide by 2, we get
$=\frac{1}{2}\left[2 \times\left(1-2 \sin ^{2} x \cos ^{2} x\right)\right]$
$=\frac{1}{2}\left[2-4 \sin ^{2} x \cos ^{2} x\right]$
$=\frac{1}{2}\left[2-(2 \sin x \cos x)^{2}\right]$
$=\frac{1}{2}\left[2-(\sin 2 x)^{2}\right][\because \sin 2 x=2 \sin x \cos x]$
$=\frac{1}{2}\left(2-\sin ^{2} 2 x\right)$
= RHS
∴ LHS = RHS
Hence Proved