prove that

Question:

$\frac{3 t-2}{3}+\frac{2 t+3}{2}=t+\frac{7}{6}$

Solution:

Given, $\frac{3 t-2}{3}+\frac{2 t+3}{2}=t+\frac{7}{6}$

$\Rightarrow$ $\frac{2(3 t-2)+3(2 t+3)}{6}=\frac{6 t+7}{6}$

$\Rightarrow$ $6 t-4+6 t+9=6 t+7$

$\Rightarrow$ $12 t+5=6 t+7$

$\Rightarrow$ $12 t-6 t=7-5$ [transposing $6 t$ to LHS and 5 to RHS]

$\Rightarrow$ $6 t=2$

$\Rightarrow$ $\frac{6 t}{6}=\frac{2}{6}$ [dividing both sides by 6 ]

$\therefore$ $t=\frac{1}{3}$

Leave a comment