Question:
Prove that
$\frac{\sin 2 x-\sin 2 y}{\cos 2 y-\cos 2 x}=\cot (x+y)$
Solution:
$=\frac{\sin 2 x-\sin 2 y}{\cos 2 y-\cos 2 x}$
$=\frac{2 \cos \frac{2 x+2 y}{2} \sin \frac{2 x-2 y}{2}}{-2 \sin \frac{2 x+2 y}{2} \sin \frac{2 y-2 x}{2}}$
$=\frac{\cos (x+y) \sin (x-y)}{\sin (x+y) \sin (x-y)}$
$=\frac{\cos (x+y)}{\sin (x+y)}$
$=\cot (x+y)$
Using the formula,
$\cos A-\cos B=-2 \sin \frac{A+B}{2} \sin \frac{A-B}{2}$
$\sin A-\sin B=2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}$