Question:
Prove that:
$\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{2}{11}=\tan ^{-1} \frac{3}{4}$
Solution:
To Prove: $\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{2}{11}=\tan ^{-1} \frac{3}{4}$
Formula Used: $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
Proof:
$\mathrm{LHS}=\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{2}{11}$
$=\tan ^{-1}\left(\frac{\frac{1}{2}+\frac{2}{11}}{1-\left(\frac{1}{2} \times \frac{2}{11}\right)}\right)$
$=\tan ^{-1}\left(\frac{11+4}{22-2}\right)$
$=\tan ^{-1} \frac{15}{20}$
$=\tan ^{-1} \frac{3}{4}$
$=\mathrm{RHS}$
Therefore LHS = RHS
Hence proved.