Prove that

Question:

If $(\cos \theta+\sec \theta)=\frac{5}{2}$ then $\left(\cos ^{2} \theta+\sec ^{2} \theta\right)=?$

(a) $\frac{17}{4}$

(b) $\frac{21}{4}$

(c) $\frac{29}{4}$

(d) $\frac{33}{4}$

 

Solution:

Given : $\cos \theta+\sec \theta=\frac{5}{2}$

$\cos \theta+\sec \theta=\frac{5}{2}$

Squaring both sides, we get

$\Rightarrow(\cos \theta+\sec \theta)^{2}=\left(\frac{5}{2}\right)^{2}$

$\Rightarrow \cos ^{2} \theta+\sec ^{2} \theta+2(\cos \theta)(\sec \theta)=\frac{25}{4}$

$\Rightarrow \cos ^{2} \theta+\sec ^{2} \theta+2(\cos \theta)\left(\frac{1}{\cos \theta}\right)=\frac{25}{4} \quad\left(\because \sec \theta=\frac{1}{\cos \theta}\right)$

$\Rightarrow \cos ^{2} \theta+\sec ^{2} \theta+2=\frac{25}{4}$

$\Rightarrow \cos ^{2} \theta+\sec ^{2} \theta=\frac{25}{4}-2$

$\Rightarrow \cos ^{2} \theta+\sec ^{2} \theta=\frac{25-8}{4}$

$\Rightarrow \cos ^{2} \theta+\sec ^{2} \theta=\frac{17}{4}$

Hence, the correct option is (a).

Leave a comment