Prove that

Question:

If $\sin (A+B)=\frac{\sqrt{3}}{2}$ and $\cos (A-B)=\frac{\sqrt{3}}{2}, 0^{\circ}<(A+B) \leq 90^{\circ}$ and $A>B$ then find the values of $A$ and $B$.

 

Solution:

As we know that,

$\sin 60^{\circ}=\frac{\sqrt{3}}{2}$

Thus,

if $\sin (A+B)=\frac{\sqrt{3}}{2}$

$\Rightarrow A+B=60^{\circ} \quad \ldots(1)$

and $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$

Thus,

if $\cos (A-B)=\frac{\sqrt{3}}{2}$

$\Rightarrow A-B=30^{\circ} \quad \ldots(2)$

Solving (1) and (2), we get

$A=45^{\circ}$ and $B=15^{\circ}$

Hence, the values of $A$ and $B$ are $45^{\circ}$ and $15^{\circ}$, respectively.

 

Leave a comment