Question:
Prove that:
$\tan ^{-1}\left(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{x y}}\right)=\tan ^{-1} \sqrt{x}+\tan ^{-1} \sqrt{y}$
Solution:
To Prove: $\tan ^{-1}\left(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{x y}}\right)=\tan ^{-1} \sqrt{x}+\tan ^{-1} \sqrt{y}$
We know that, $\tan A+\tan B=\frac{\tan A+\tan B}{1-\tan A \tan B}$
Also, $\tan ^{-1}\left(\frac{\mathrm{A}+\mathrm{B}}{1-\mathrm{AB}}\right)=\tan ^{-1} \mathrm{~A}+\tan ^{-1} \mathrm{~B}$
Taking $A=\sqrt{x}$ and $B=\sqrt{y}$
We get,
$\tan ^{-1}\left(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{x y}}\right)=\tan ^{-1} \sqrt{x}+\tan ^{-1} \sqrt{y}$
Hence, Proved.