Prove that

Question:

Prove that

$\cos x+\cos \left(120^{\circ}-x\right)+\cos \left(120^{\circ}+x\right)=0$

 

Solution:

In this question the following formulas will be used:

$\cos (A+B)=\cos A \cos B-\sin A \sin B$

$\cos (A-B)=\cos A \cos B+\sin A \sin B$

$=\cos x+\cos 120^{\circ} \cos x-\sin 120 \sin x+\cos 120^{\circ} \cos x+\sin 120 \sin x$

$=\cos x+2 \cos 120 \cos x$

$=\cos x+2 \cos (90+30) \cos x$

$=\cos x+2(-\sin 30) \cos x$

$=\cos x-2 \times \frac{1}{2} \cos x$

$=\cos x-\cos x$

$=0$.

 

Leave a comment