Prove that
$\sin \frac{\pi}{6} \cos 0+\sin \frac{\pi}{4} \cos \frac{\pi}{4}+\sin \frac{\pi}{3} \cos \frac{\pi}{6}=\frac{7}{4}$
To prove: $\sin \frac{\pi}{6} \cos 0+\sin \frac{\pi}{4} \cos \frac{\pi}{4}+\sin \frac{\pi}{3} \cos \frac{\pi}{6}=\frac{7}{4}$
Taking LHS,
$=\sin \frac{\pi}{6} \cos 0+\sin \frac{\pi}{4} \cos \frac{\pi}{4}+\sin \frac{\pi}{3} \cos \frac{\pi}{6}$
Putting $\pi=180^{\circ}$
$=\sin \frac{180}{6} \cos 0+\sin \frac{180}{4} \cos \frac{180}{4}+\sin \frac{180}{3} \cos \frac{180}{6}$
$=\sin 30^{\circ} \cos 0^{\circ}+\sin 45^{\circ} \cos 45^{\circ}+\sin 60^{\circ} \cos 30^{\circ}$
Now, we know that,
$\sin 30^{\circ}=\frac{1}{2}$
$\cos 0^{\circ}=1$
$\sin 45^{\circ}=\frac{1}{\sqrt{2}}$
$\cos 45^{\circ}=\frac{1}{\sqrt{2}}$
$\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
$\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
Putting the values, we get
$=\frac{1}{2} \times 1+\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}$
$=\frac{1}{2}+\frac{1}{2}+\frac{3}{4}$
$=\frac{2+2+3}{4}$
$=\frac{7}{4}$
= RHS
∴ LHS = RHS
Hence Proved