Prove that

Question:

$\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$

 

Solution:

$\frac{\cot A-\cos A}{\cot A+\cos A}$

$=\frac{\frac{\cos A}{\sin A}-\cos A}{\frac{\cos A}{\sin A}+\cos A}$

$=\frac{\cos A\left(\frac{1}{\sin A}-1\right)}{\cos A\left(\frac{1}{\sin A}+1\right)}$

$=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1} \quad\left(\operatorname{cosec} A=\frac{1}{\sin A}\right)$

 

Leave a comment