Question:
Prove that
$2 \cos ^{2} 15^{0}-1=\frac{\sqrt{3}}{2}$
Solution:
To Prove: $2 \cos ^{2} 15^{\circ}-1=\frac{\sqrt{3}}{2}$
Taking LHS,
$=2 \cos ^{2} 15^{\circ}-1 \ldots(\mathrm{i})$
We know that,
$1+\cos 2 x=2 \cos ^{2} x$
Here, $x=15^{\circ}$
So, eq. (i) become
$=\left[1+\cos 2\left(15^{\circ}\right)\right]-1$
$=1+\cos 30^{\circ}-1$
$=\cos 30^{\circ}\left[\because \cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}\right]$
$=\frac{\sqrt{3}}{2}$
= RHS
∴ LHS = RHS
Hence Proved