Prove that:
$\sin ^{-1} \frac{1}{\sqrt{5}}+\sin ^{-1} \frac{2}{\sqrt{5}}=\frac{\pi}{2}$
To Prove: $\sin ^{-1} \frac{1}{\sqrt{5}}+\sin ^{-1} \frac{2}{\sqrt{5}}=\frac{\pi}{2}$
Formula Used: $\sin ^{-1} x+\sin ^{-1} y=\sin ^{-1}\left(x \times \sqrt{1-y^{2}}+y \times \sqrt{1-x^{2}}\right)$
Proof:
$\mathrm{LHS}=\sin ^{-1} \frac{1}{\sqrt{5}}+\sin ^{-1} \frac{2}{\sqrt{5}}$
$=\sin ^{-1}\left(\frac{1}{\sqrt{5}} \times \sqrt{1-\left(\frac{2}{\sqrt{5}}\right)^{2}}+\frac{2}{\sqrt{5}} \times \sqrt{1-\left(\frac{1}{\sqrt{5}}\right)^{2}}\right)$
$=\sin ^{-1}\left(\frac{1}{\sqrt{5}} \times \sqrt{1-\frac{4}{5}}+\frac{2}{\sqrt{5}} \times \sqrt{1-\frac{1}{5}}\right)$
$=\sin ^{-1}\left(\frac{1}{\sqrt{5}} \times \frac{1}{\sqrt{5}}+\frac{2}{\sqrt{5}} \times \frac{2}{\sqrt{5}}\right)$
$=\sin ^{-1}\left(\frac{1}{5}+\frac{4}{5}\right)$
$=\sin ^{-1} \frac{5}{5}$
$=\sin ^{-1} 1$
$=\frac{\pi}{2}$
$=\mathrm{RHS}$
Therefore, LHS = RHS
Hence proved.