Question:
Prove that ${ }^{9} p_{3}+3 \times{ }^{9} p_{2}={ }^{10} p_{3}$
Solution:
To Prove: ${ }^{9} \mathrm{P}_{3}+3 \times{ }^{9} \mathrm{P}_{2}={ }^{10} \mathrm{P}_{3}$
Formula Used:
Total number of ways in which n objects can be arranged in r places (Such that no object is replaced) is given by,
${ }_{n} P_{r}=\frac{n !}{(n-r) !}$
The equation given below needs to be proved i.e
${ }^{9} P_{3}+3 \times{ }^{9} P_{2}={ }^{10} P_{3}$
$\frac{9 !}{(9-3) !}_{+}\left(3 \times \frac{9 !}{(9-2) !}\right)=\frac{10 !}{(10-3) !}$
$(9 \times 8 \times 7)+(3 \times 9 \times 8)=10 \times 9 \times 8$
$10 \times 9 \times 8=10 \times 9 \times 8$
Hence, proved.
${ }^{9} \mathrm{P}_{3}+3 \times{ }^{9} \mathrm{P}_{2}={ }^{10} \mathrm{P}_{3}$