Prove that

Question:

Prove that $6 i^{50}+5 i^{33}-2 i^{15}+6 i^{48}=7 i$

 

Solution:

Given: $6 i^{50}+5 i^{33}-2 i^{15}+6 i^{48}$

To prove: $6 i^{50}+5 i^{33}-2 i^{15}+6 i^{48}=7 i$

$\Rightarrow 6 i^{4 \times 12+2}+5 i^{4 \times 8+1}-2 i^{4 \times 3+3}+6 i^{4 \times 12}$

$\Rightarrow 6 i^{2}+5 i^{1}-2 i^{3}+6 i^{0}$

$\Rightarrow-6+5 i+2 i+6$

$\Rightarrow 7 \mathrm{i}$

$\Rightarrow$ L.H.S $=$ R.H.S

Hence proved.

 

Leave a comment