Question:
Prove that:
$\tan ^{-1} 1+\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}=\frac{\pi}{2}$
Solution:
To Prove: $\tan ^{-1} 1+\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}=\frac{\pi}{2}$
Formula Used: $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
Proof:
$\mathrm{LHS}=\tan ^{-1} 1+\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}$
$=\tan ^{-1} 1+\tan ^{-1}\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\left(\frac{1}{2} \times \frac{1}{3}\right)}\right)$
$=\tan ^{-1} 1+\tan ^{-1}\left(\frac{5}{6-1}\right)$
$=\tan ^{-1} 1+\tan ^{-1} 1$
$=\frac{\pi}{4}+\frac{\pi}{4}$
$=\frac{\pi}{2}$
$=\mathrm{RHS}$
Therefore LHS = RHS
Hence proved.