Question:
Prove that
$8 \cos ^{3} 20^{\circ}-6 \cos 20^{\circ}=1$
Solution:
To Prove: $8 \cos ^{3} 20^{\circ}-6 \cos 20^{\circ}=1$
Taking LHS,
$=8 \cos ^{3} 20^{\circ}-6 \cos 20^{\circ}$
Taking 2 common, we get
$=2\left(4 \cos ^{3} 20^{\circ}-3 \cos 20^{\circ}\right) \ldots$ (i)
We know that,
$\cos 3 x=4 \cos ^{3} x-3 \cos x$
Here, x = 20°
So, eq. (i) becomes
$=2\left[\cos 3\left(20^{\circ}\right)\right]$
$=2\left[\cos 60^{\circ}\right]$
$=2 \times \frac{1}{2}\left[\because \cos \left(60^{\circ}\right)=\frac{1}{2}\right]$
= 1
= RHS
∴ LHS = RHS
Hence Proved