Question:
Prove that
$2 \sin 22 \frac{1^{0}}{2} \cos 22 \frac{1^{0}}{2}=\frac{1}{\sqrt{2}}$
Solution:
To Prove: $2 \sin 22 \frac{1^{\circ}}{2} \cos 22 \frac{1^{\circ}}{2}=\frac{1}{\sqrt{2}}$
Taking LHS,
$=2 \sin 22 \frac{1}{2}^{\circ} \cos 22 \frac{1}{2}^{\circ} \ldots$ (i)
We know that,
$2 \sin x \cos x=\sin 2 x$
Here, $\mathrm{x}=22 \frac{1}{2}=\frac{45}{2}$
So, eq. (i) become
$=\sin 2\left(\frac{45}{2}\right)$
$=\sin 45^{\circ}$
$=\frac{1}{\sqrt{2}}\left[\because \sin \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}\right]$
= RHS
∴ LHS = RHS
Hence Proved