Prove that: $\cot ^{2} x-\tan ^{2} x=4 \cot 2 x \operatorname{cosec} 2 x$
$\mathrm{LHS}=\cot ^{2} x-\tan ^{2} x$
$=\frac{\cos ^{2} x}{\sin ^{2} x}-\frac{\sin ^{2} x}{\cos ^{2} x}$
$=\frac{\left(\cos ^{2} x\right)^{2}-\left(\sin ^{2} x\right)^{2}}{\sin ^{2} x \cos ^{2} x}$
$=\frac{\left(\cos ^{2} x+\sin ^{2} x\right)\left(\cos ^{2} x-\sin ^{2} x\right)}{\sin ^{2} x \cos ^{2} x}$
$=\frac{1 \times(\cos 2 x)}{\sin ^{2} x \cos ^{2} x} \quad\left(\because \cos ^{2} x-\sin ^{2} x=\cos 2 x\right)$
$=\frac{4 \cos 2 x}{4 \sin ^{2} x \cos ^{2} x}$
$=\frac{4(\cos 2 x)}{(\sin 2 x)^{2}}$
$=\frac{4(\cos 2 x)}{(\sin 2 x)} \times \frac{1}{(\sin 2 x)}$
$=4 \cot 2 x \operatorname{cosec} 2 x=\mathrm{RHS}$
Hence proved.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.