Prove that:
(i) sin 38° + sin 22° = sin 82°
(ii) cos 100° + cos 20° = cos 40°
(iii) sin 50° + sin 10° = cos 20°
(iv) sin 23° + sin 37° = cos 7°
(v) sin 105° + cos 105° = cos 45°
(vi) sin 40° + sin 20° = cos 10°
(i) Consider LHS :
$s$ in $38^{\circ}+\sin 22^{\circ}$
$=2 \sin \left(\frac{38^{\circ}+22^{\circ}}{2}\right) \cos \left(\frac{38^{\circ}-22^{\circ}}{2}\right)$ $\left\{\because \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right\}$
$=2 \sin 30^{\circ} \cos 8^{\circ}$
$=2 \times \frac{1}{2} \cos \left(90^{\circ}-8^{\circ}\right)$
$=\sin 82^{\circ}$
= RHS
Hence, LHS = RHS.
(ii) Consider LHS :
$\cos 100^{\circ}+\cos 20^{\circ}$
$=2 \cos \left(\frac{100^{\circ}+20^{\circ}}{2}\right) \cos \left(\frac{100^{\circ}-20^{\circ}}{2}\right) \quad\left\{\because \cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right\}$
$=2 \cos 60^{\circ} \cos 40^{\circ}$
$=2 \times \frac{1}{2} \cos 40^{\circ}$
$=\cos 40^{\circ}$
Hence, LHS = RHS.
(iii) Consider LHS :
$\sin 50^{\circ}+\sin 10^{\circ}$
$=2 \sin \left(\frac{50^{\circ}+10^{\circ}}{2}\right) \cos \left(\frac{50^{\circ}-10^{\circ}}{2}\right) \quad\left\{\because \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right\}$
$=2 \sin 30^{\circ} \cos 20^{\circ}$
$=2 \times \frac{1}{2} \cos 20^{\circ}$
$=\cos 20^{\circ}$
Hence, LHS = RHS.
(iv) Consider LHS :
$s$ in $23^{\circ}+\sin 37^{\circ}$
$=2 \sin \left(\frac{23^{\circ}+37^{\circ}}{2}\right) \cos \left(\frac{23^{\circ}-37^{\circ}}{2}\right) \quad\left\{\because \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right\}$
$=2 \sin 30^{\circ} \cos \left(-7^{\circ}\right)$
$=2 \sin 30^{\circ} \cos 7^{\circ}$
$=2 \times \frac{1}{2} \cos 7^{\circ}$
$=\cos 7^{\circ}$
Hence, LHS = RHS.
(v) Consider LHS :
$s$ in $105^{\circ}+\cos 105^{\circ}$
$=\sin 105^{\circ}+\cos \left(90^{\circ}+15^{\circ}\right)$
$=\sin 105^{\circ}-\sin 15^{\circ}$
$=2 \sin \left(\frac{105^{\circ}-15^{\circ}}{2}\right) \cos \left(\frac{105^{\circ}+15^{\circ}}{2}\right) \quad\left\{\because \sin A+\sin B=2 \sin \left(\frac{A-B}{2}\right) \cos \left(\frac{A+B}{2}\right)\right\}$
$=2 \sin 45^{\circ} \cos 60^{\circ}$
$=2 \sin \left(90^{\circ}-45^{\circ}\right) \cos 60^{\circ}$
$=2 \times \frac{1}{2} \cos \left(45^{\circ}\right)$
$=\cos 45^{\circ}$
Hence, LHS = RHS.
(vi) Consider LHS :
$\sin 40^{\circ}+\sin 20^{\circ}$
$=2 \sin \left(\frac{40^{\circ}+20^{\circ}}{2}\right) \cos \left(\frac{40^{\circ}-20^{\circ}}{2}\right) \quad\left\{\because \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right\}$
$=2 \sin 30^{\circ} \cos 10^{\circ}$
$=2 \times \frac{1}{2} \cos 10^{\circ}$
$=\cos \left(10^{\circ}\right)$
Hence, LHS = RHS.