Question:
Prove that
$(\sin x-\cos x)^{2}=1-\sin 2 x$
Solution:
To Prove: $(\sin x-\cos x)^{2}=1-\sin 2 x$
Taking LHS,
$=(\sin x-\cos x)^{2}$
Using,
$(a-b)^{2}=\left(a^{2}+b^{2}-2 a b\right)$
$=\sin ^{2} x+\cos ^{2} x-2 \sin x \cos x$
$=\left(\sin ^{2} x+\cos ^{2} x\right)-2 \sin x \cos x$
$=1-2 \sin x \cos x\left[\because \cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$=1-\sin 2 x[\because \sin 2 x=2 \sin x \cos x]$
= RHS
∴ LHS = RHS
Hence Proved