Prove that $\sqrt{3}$ is an irrational number.
Let $\sqrt{3}$ be rational and its simplest form be $\frac{a}{b}$.
Then, $a, b$ are integers with no common factors other than 1 and $b \neq 0$.
Now $\sqrt{3}=\frac{a}{b} \Rightarrow 3=\frac{a^{2}}{b^{2}}$ [on squaring both sides]
$\Rightarrow 3 b^{2}=a^{2}$ ... (1)
$\Rightarrow 3$ divides $a^{2} \quad$ [since 3 divides $3 b^{2}$ ]
$\Rightarrow 3$ divides $a \quad$ [since 3 is prime, 3 divides $a^{2} \Rightarrow 3$ divides $a$ ]
Let $a=3 c$ for some integer $c$.
Putting $a=3 c$ in equation (1), we get
$3 b^{2}=9 c^{2} \Rightarrow b=3 c^{2}$
$\Rightarrow 3$ divides $b^{2} \quad$ [since 3 divides $3 c^{2}$ ]
$\Rightarrow 3$ divides $b \quad$ [since 3 is prime, 3 divides $b^{2} \Rightarrow 3$ divides $b$ ]
Thus, 3 is a common factor of both $a, b$.
But this contradicts the fact that $a, b$ have no common factor other than 1 .
The contradiction arises by assuming $\sqrt{3}$ is rational.
Hence, $\sqrt{3}$ is rational.