Prove that: $\cos \frac{\pi}{5} \cos \frac{2 \pi}{5} \cos \frac{4 \pi}{5} \cos \frac{8 \pi}{5}=\frac{-1}{16}$
$\cos \frac{\pi}{5} \cos \frac{2 \pi}{5} \cos \frac{4 \pi}{5} \cos \frac{8 \pi}{5}$
$=\frac{1}{2 \sin \frac{\pi}{5}}\left(2 \sin \frac{\pi}{5} \cos \frac{\pi}{5} \cos \frac{2 \pi}{5} \cos \frac{4 \pi}{5} \cos \frac{8 \pi}{5}\right) \quad$ (Multiplying and dividing by $\frac{1}{2 \sin \frac{\pi}{5}}$ )
$=\frac{1}{2 \sin \frac{\pi}{2}}\left(\sin \frac{2 \pi}{5} \cos \frac{2 \pi}{5} \cos \frac{4 \pi}{5} \cos \frac{8 \pi}{5}\right) \quad(\sin 2 A=2 \sin A \cos A)$
$=\frac{1}{4 \sin \frac{\pi}{5}}\left(2 \sin \frac{2 \pi}{5} \cos \frac{2 \pi}{5} \cos \frac{4 \pi}{5} \cos \frac{8 \pi}{5}\right) \quad$ (Multiplying and dividing by 2 )
$=\frac{1}{4 \sin \frac{\pi}{5}}\left(\sin \frac{4 \pi}{5} \cos \frac{4 \pi}{5} \cos \frac{8 \pi}{5}\right)$
$=\frac{1}{8 \sin \frac{\pi}{5}}\left(2 \sin \frac{4 \pi}{5} \cos \frac{4 \pi}{5} \cos \frac{8 \pi}{5}\right) \quad$ (Multiplying and dividing by 2 )
$=\frac{1}{8 \sin \frac{\pi}{5}}\left(\sin \frac{8 \pi}{5} \cos \frac{8 \pi}{5}\right)$
$=\frac{1}{16 \sin \frac{\pi}{5}}\left(2 \sin \frac{8 \pi}{5} \cos \frac{8 \pi}{5}\right) \quad$ (Multiplying and dividing by 2)
$=\frac{\sin \frac{16 \pi}{5}}{16 \sin \frac{\pi}{5}}$
$=\frac{\sin \left(3 \pi+\frac{\pi}{5}\right)}{16 \sin \frac{\pi}{5}}$
$=\frac{-\sin \frac{\pi}{5}}{16 \sin \frac{\pi}{5}}$ $[\sin (3 \pi+\theta)=-\sin \theta]$
$=\frac{-1}{16}$