Question:
Prove that
$\frac{0.85 \times 0.85 \times 0.85+0.15 \times 0.15 \times 0.15}{0.85 \times 0.85-0.85 \times 0.15+0.15 \times 0.15}=1$
Solution:
LHS:
$\frac{0.85 \times 0.85 \times 0.85+0.15 \times 0.15 \times 0.15}{0.85 \times 0.85-0.85 \times 0.15+0.15 \times 0.15}$
$=\frac{(0.85)^{3}+(0.15)^{3}}{(0.85)^{2}-0.85 \times 0.15+(0.15)^{2}}$
We know
$a^{3}+b^{3}=(a+b)\left(a^{2}+b^{2}-a b\right)$
Here $a=0.85, b=0.15$
$\frac{(0.85)^{3}+(0.15)^{3}}{(0.85)^{2}-0.85 \times 0.15+(0.15)^{2}}$
$=\frac{(0.85+0.15)\left((0.85)^{2}-0.85 \times 0.15+(0.15)^{2}\right)}{(0.85)^{2}-0.85 \times 0.15+(0.15)^{2}}$
$=0.85+0.15=1: \mathrm{RHS}$
Thus, LHS = RHS