Question:
If $A \times B \subseteq C \times D$ and $A \times B \neq \phi$, prove that $A \subseteq C$ and $B \subseteq D .$
Solution:
Given: $A \times B \subseteq C \times D$ and $A \times B \neq \phi$
Need to prove: $A \subseteq C$ and $B \subseteq D$
Let us consider, $(x, y)^{\in}(A \times B) \cdots(1)$
$\Rightarrow(x, y)^{\in}(C \times D)[\operatorname{as} A \times B \subseteq C \times D] \cdots(2)$
From (1) we can say that,
$x \in_{A}$ and $y \in_{B \cdots}$ (a)
From (2) we can say that,
$x^{\in} C$ and $y \in D \ldots$ (b)
Comparing (a) and (b) we can say that
$\Rightarrow x^{\in}$ A and $x^{\in} C$
$\Rightarrow A \subseteq C$
Again
$\Rightarrow y \in_{B}$ and $y \in_{D}$
$\Rightarrow B \subseteq D$ [Proved]