Prove that:

Question:

Prove that:

$1+\cos ^{2} 2 x=2\left(\cos ^{4} x+\sin ^{4} x\right)$

Solution:

$\mathrm{LHS}=1+\cos ^{2} 2 x$

Using the identity $\cos 2 x=\cos ^{2} x-s \operatorname{in}^{2} x$, we get

LHS $=1+\left(\cos ^{2} x-\sin ^{2} x\right)^{2}$

$=1+\cos ^{4} x+\sin ^{4} x-2 \cos ^{2} x \sin ^{2} x$

$=\left(\cos ^{2} x+\sin ^{2} x\right)^{2}+\cos ^{4} x+\sin ^{4} x-2 \cos ^{2} x \sin ^{2} x \quad\left[\because \cos ^{2} x+\sin ^{2} x=1\right]$

$=\cos ^{4} x+\sin ^{4} x+2 \cos ^{2} x \sin ^{2} x+\cos ^{4} x+\sin ^{4} x-2 \cos ^{2} x \sin ^{2} x$

$=2\left(\cos ^{4} x+\sin ^{4} x\right)=\mathrm{RHS}$

Hence proved.

Leave a comment