Question:
Prove that
$\cot 4 x(\sin 5 x+\sin 3 x)=\cot x(\sin 5 x-\sin 3 x)$
Solution:
L.H.S
$\cot 4 x(\sin 5 x+\sin 3 x)$
$=\cot 4 x\left(2 \sin \frac{5 x+3 x}{2} \cos \frac{5 x-3 x}{2}\right)$
$=\cot 4 x(2 \sin 4 x \cos x)$
$=\frac{\cos 4 x}{\sin 4 x}(2 \sin 4 x \cos x)$
$=2 \cos 4 x \cos x$
R.H.S
$\cot x(\sin 5 x-\sin 3 x)$
$=\cot x\left(2 \cos \frac{5 x+3 x}{2} \sin \frac{5 x-3 x}{2}\right)$
$=\cot x(2 \cos 4 x \sin x)$
$=\frac{\cos x}{\sin x}(2 \cos 4 x \sin x)$
$=2 \cos 4 x \cos x$
L.H.S=R.H.S
Hence, proved.
Using the formula,
$\sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$
$\sin A-\sin B=2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}$