Prove that

Question:

$\left(\sin ^{2} 30^{\circ}-\sec ^{2} 60^{\circ}+4 \cot ^{2} 45^{\circ}\right)=?$

(a) 4
(b) 2
(c) 1

(d) $\frac{1}{4}$

 

Solution:

As we know that,

$\sin 30^{\circ}=\frac{1}{2}$

$\sec 60^{\circ}=2$

 

$\cot 45^{\circ}=1$

By substituting these values, we get

$\left(\sin ^{2} 30^{\circ}-\sec ^{2} 60^{\circ}+4 \cot ^{2} 45^{\circ}\right)=\left(\frac{1}{2}\right)^{2}-(2)^{2}+4(1)^{2}$

$=\frac{1}{4}-4+4$

$=\frac{1}{4}$

Hence, the correct option is (d).

 

Leave a comment