Question:
Prove that:
$\tan ^{-1} 1+\tan ^{-1} 2+\tan ^{-1} 3=\pi$
Solution:
To Prove: $\tan ^{-1} 1+\tan ^{-1} 2+\tan ^{-1} 3=\pi$
Formula Used: $\tan ^{-1} x+\tan ^{-1} y=\pi+\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$ where $x y>1$
Proof:
$\mathrm{LHS}=\tan ^{-1} 1+\tan ^{-1} 2+\tan ^{-1} 3$
$=\frac{\pi}{4}+\pi+\tan ^{-1}\left(\frac{2+3}{1-(2 \times 3)}\right)\{$ since $2 \times 3=6>1\}$
$=\frac{5 \pi}{4}+\tan ^{-1}\left(\frac{5}{-5}\right)$
$=\frac{5 \pi}{4}+\tan ^{-1}(-1)$
$=\frac{5 \pi}{4}-\frac{\pi}{4}$
$=\pi$
$=\mathrm{RHS}$
Therefore LHS = RHS
Hence proved.