If $y=\left(\sqrt{\frac{x}{a}}+\sqrt{\frac{a}{x}}\right)$, prove that $(2 x y)\left(\frac{d y}{d x}\right)=\left(\frac{x}{a}-\frac{a}{x}\right)$
To prove:
$(2 x y)\left(\frac{d y}{d x}\right)=\left(\frac{x}{a}-\frac{a}{x}\right)$
Differentiating $y$ with respect to $x$
$\frac{d y}{d x}=\frac{d}{d x}\left(\sqrt{\frac{x}{a}}+\sqrt{\frac{a}{x}}\right)=\frac{1}{2 \sqrt{a x}}-\frac{\sqrt{a}}{2 x^{\frac{3}{2}}}$
Now,
$\mathrm{LHS}=(2 \mathrm{xy})\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
$L H S=2 x\left(\sqrt{\frac{x}{a}}+\sqrt{\frac{a}{x}}\right)\left(\frac{1}{2 \sqrt{a x}}-\frac{\sqrt{a}}{2 x^{\frac{3}{2}}}\right)$
$L H S=\left(\sqrt{\frac{x}{a}}+\sqrt{\frac{a}{x}}\right)\left(\sqrt{\frac{x}{a}}-\sqrt{\frac{a}{x}}\right)$
$L H S=\left(\frac{x}{a}-\frac{a}{x}\right)$
$\therefore \mathrm{LHS}=\mathrm{RHS}$