Prove that:

Question:

Prove that:

$\sqrt{2+\sqrt{2+2 \cos 4 x}}=2 \cos x$

Solution:

LHS $=\sqrt{2+\sqrt{2+2 \cos 4 x}}$

$=\sqrt{2+\sqrt{2(1+\cos 4 x)}}$

$=\sqrt{2+\sqrt{2 \times 2 \cos ^{2} 2 x}} \quad\left(\because 2 \cos ^{2} 2 x=1+\cos 4 x\right)$

$=\sqrt{2+2 \cos 2 x}$

$=\sqrt{2(1+\cos 2 x)}$

$=\sqrt{2.2 \cos ^{2} x} \quad\left(\because 2 \cos ^{2} x=1+\cos 2 x\right)$

$=2 \cos x=\mathrm{RHS}$

Hence proved.

 

Leave a comment