Question:
Prove that
cosec 2x + cot 2x = cot x
Solution:
To Prove: cosec 2x + cot 2x = cot x
Taking LHS,
= cosec 2x + cot 2x …(i)
We know that,
$\operatorname{cosec} x=\frac{1}{\sin x} \& \cot x=\frac{\cos x}{\sin x}$
Replacing x by 2x, we get
$\operatorname{cosec} 2 x=\frac{1}{\sin 2 x} \& \cot 2 x=\frac{\cos 2 x}{\sin 2 x}$
So, eq. (i) becomes
$=\frac{1}{\sin 2 x}+\frac{\cos 2 x}{\sin 2 x}$
$=\frac{1+\cos 2 x}{\sin 2 x}$
$=\frac{2 \cos ^{2} x}{\sin 2 x}\left[\because 1+\cos 2 x=2 \cos ^{2} x\right]$
$=\frac{2 \cos ^{2} x}{2 \sin x \cos x}[\because \sin 2 x=2 \sin x \cos x]$
$=\frac{\cos x}{\sin x}$
$=\cot x\left[\because \cot x=\frac{\cos x}{\sin x}\right]$
= RHS
Hence Proved