Question:
Prove that:
$\cos ^{-1}\left(1-2 x^{2}\right)=2 \sin ^{-1} x$
Solution:
To Prove: $\cos ^{-1}\left(1-2 x^{2}\right)=2 \sin ^{-1} x$
Formula Used: $\cos 2 A=1-2 \sin ^{2} A$
Proof:
$\mathrm{LHS}=\cos ^{-1}\left(1-2 \mathrm{x}^{2}\right) \ldots(1)$
Let $x=\sin A \ldots$ (2)
Substituting $(2)$ in $(1)$,
LHS $=\cos ^{-1}\left(1-2 \sin ^{2} \mathrm{~A}\right)$
$=\cos ^{-1}(\cos 2 \mathrm{~A})$
$=2 \mathrm{~A}$
From $(2), A=\sin ^{-1} x$
$2 A=2 \sin ^{-1} x$
$=\mathrm{RHS}$
Therefore, $\mathrm{LHS}=\mathrm{RHS}$
Hence proved.