Prove that

Question:

$\int \frac{(1+\cos x)}{x+\sin x} d x$

Solution:

$I=\int \frac{1+\cos x}{x+\sin x} d x$

Putting, $x+\sin x=t \Rightarrow(1+\cos x) d x=d t$

So, $I=\int \frac{d t}{t}=\log |t|=\log |x+\sin x|+C$

Therefore,

$\mathrm{I}=\log |t|=\log |x+\sin x|+\mathrm{C}$

Leave a comment