Prove that:
(i) $\sin \alpha+\sin \beta+\sin \gamma-\sin (\alpha+\beta+\gamma)=4 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\beta+\gamma}{2}\right) \sin \left(\frac{\gamma+\alpha}{2}\right)$
(ii) cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos B cos C
(i) Consider LHS :
$\sin \alpha+\sin \beta+\sin \gamma-\sin (\alpha+\beta+\gamma)$
$=2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)+2 \cos \left(\frac{\gamma+\alpha+\beta+\gamma}{2}\right) \sin \left(\frac{\gamma-\alpha-\beta-\gamma}{2}\right)$
$=2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)+2 \cos \left(\frac{2 \gamma+\alpha+\beta}{2}\right) \sin \left(\frac{-\alpha-\beta}{2}\right)$
$=2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)+2 \cos \left(\frac{2 \gamma+\alpha+\beta}{2}\right) \sin \left[-\left(\frac{\alpha+\beta}{2}\right)\right]$
$=2 \sin \left(\frac{\alpha+\beta}{2}\right)\left[\cos \left(\frac{\alpha-\beta}{2}\right)-\cos \left(\frac{2 \gamma+\alpha+\beta}{2}\right)\right]$
$=2 \sin \left(\frac{\alpha+\beta}{2}\right)\left[-2 \sin \left(\frac{\alpha-\beta+2 \gamma+\alpha+\beta}{4}\right) \sin \left(\frac{\alpha-\beta-2 \gamma-\alpha-\beta}{4}\right)\right]$
$=2 \sin \left(\frac{\alpha+\beta}{2}\right)\left[-2 \sin \left(\frac{\alpha+\gamma}{2}\right) \sin \left(\frac{-\beta-\gamma}{2}\right)\right]$
$=2 \sin \left(\frac{\alpha+\beta}{2}\right)\left[2 \sin \left(\frac{\alpha+\gamma}{2}\right) s \operatorname{in}\left(\frac{\beta+\gamma}{2}\right)\right]$
$=4 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha+\gamma}{2}\right) \sin \left(\frac{\beta+\gamma}{2}\right)$
= RHS
Hence, LHS = RHS
(ii) Consider LHS :
$\cos (A+B+C)+\cos (A-B+C)+\cos (A+B-C)+\cos (-A+B+C)$
$=2 \cos \left(\frac{\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{A}-\mathrm{B}+\mathrm{C}}{2}\right) \cos \left(\frac{\mathrm{A}+\mathrm{B}+\mathrm{C}-\mathrm{A}+\mathrm{B}-\mathrm{C}}{2}\right)+2 \cos \left(\frac{\mathrm{A}+\mathrm{B}-\mathrm{C}-\mathrm{A}+\mathrm{B}+\mathrm{C}}{2}\right) \cos \left(\frac{\mathrm{A}+\mathrm{B}-\mathrm{C}+\mathrm{A}-\mathrm{B}-\mathrm{C}}{2}\right)$
$=2 \cos (A+\mathrm{C}) \cos B+2 \cos B \cos (A-C)$
$=2 \cos B[\cos (A+\mathrm{C})+\cos (A-C)]$
$=2 \cos B\left[2 \cos \left(\frac{A+C+A-C}{2}\right) \cos \left(\frac{A+C-A+C}{2}\right)\right]$
$=2 \cos B[2 \cos A \cos C]$
$=4 \cos A \cos B \cos C$
= RHS
Hence, LHS = RHS
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.