Prove that

Question:

Prove that $\mathrm{i}^{53}+\mathrm{i}^{72}+\mathrm{i}^{93}+\mathrm{i}^{102}=2 \mathrm{i}$

 

Solution:

L.H.S $=\mathrm{i}^{53}+\mathrm{i}^{72}+\mathrm{i}^{93}+\mathrm{i}^{102}$

$=i^{4 \times 13+1}+i^{4 \times 18}+i^{4 \times 23+1}+i^{4 \times 25+2}$

Since $i^{4 n}=1$

$\Rightarrow i^{4 n+1}=i$ (where $n$ is any positive integer)

$\Rightarrow i^{4 n+2}=-1$

$\Rightarrow i^{4 n+3}=-1$

$=i+1+i+i^{2}$

$=i+1+i-1$

$=2 \mathrm{i}$

L.H.S = R.H.S

Hence proved.

 

Leave a comment