Prove that:

Question:

Prove that: $\frac{7 \pi}{12}+\cos \frac{\pi}{12}=\sin \frac{5 \pi}{12}-\sin \frac{\pi}{12}$

Solution:

$105^{\circ}=\frac{7 \pi}{12}, 15^{\circ}=\frac{\pi}{12}, 75^{\circ}=\frac{5 \pi}{12}, 15^{\circ}=\frac{\pi}{12}$

LHS = cos105o + cos15o

 = cos(90o + 15o) + cos(90o -">- 75o)

 = - sin 15o + sin 75o                      [As cos(90o+A) = -">- sin and cos(90o -">- B) = sin B]

= sin 75o -">- sin 15o

= RHS

Hence proved.

Leave a comment