Prove that:
$\cos \frac{2 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{8 \pi}{15} \cos \frac{16 \pi}{15}=\frac{1}{16}$
$\mathrm{LHS}=\cos \frac{2 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{8 \pi}{15} \cos \frac{16 \pi}{15}$
On dividing and multiplying by $2 \sin \frac{2 \pi}{15}$, we get
$=\frac{1}{2 \sin \frac{2 \pi}{15}} \times\left(2 \sin \frac{2 \pi}{15} \times \cos \frac{2 \pi}{15}\right) \times \cos \frac{4 \pi}{15} \times \cos \frac{8 \pi}{15} \times \cos \frac{16 \pi}{15}$
$=\frac{1}{2 \times 2 \sin \frac{2 \pi}{15}} \times\left(2 \sin \frac{4 \pi}{15} \times \cos \frac{4 \pi}{15}\right) \times \cos \frac{8 \pi}{15} \times \cos \frac{16 \pi}{15}$
$=\frac{1}{2 \times 4 \sin \frac{2 \pi}{15}}\left(2 \sin \frac{8 \pi}{15} \times \cos \frac{8 \pi}{15}\right) \times \cos \frac{16 \pi}{15}$
$=\frac{1}{2 \times 8 \sin \frac{2 \pi}{15}}\left(2 \sin \frac{16 \pi}{15} \times \cos \frac{16 \pi}{15}\right)$
$=\frac{1}{16 \sin \frac{2 \pi}{15}}\left(\sin \frac{32 \pi}{15}\right)$
$=-\frac{1}{16 \sin \frac{2 \pi}{15}}\left(\sin 2 \pi-\frac{32 \pi}{15}\right) \quad[\because \sin (2 \pi-\theta)=-\sin \theta]$
$=-\frac{1}{16 \sin \frac{2 \pi}{15}} \sin \left(-\frac{2 \pi}{15}\right)$
$=\frac{1}{16}=\mathrm{RHS}$
Hence proved.