Prove that:

Question:

Prove that:

$\cos 4 x=1-8 \cos ^{2} x+8 \cos ^{4} x$

Solution:

LHS $=\cos 4 x$

$=\cos (2 \times 2 x)$

$=2 \cos ^{2} \times 2 x-1 \quad\left[\because \cos 2 \theta=2 \cos ^{2} \theta-1\right]$

$=2\left(2 \cos ^{2} x-1\right)^{2}-1\left[\because \cos ^{2} 2 \theta=\left(2 \cos ^{2} \theta-1\right)^{2}\right]$

$=2\left(4 \cos ^{4} x-4 \cos ^{2} x+1\right)-1$

$=8 \cos ^{4} x-8 \cos ^{2} x+1$

$=1-8 \cos ^{2} x+8 \cos ^{4} x=$ RHS

Hence proved.

Leave a comment