Question:
Prove that
$3 \sin 40^{\circ}-\sin ^{3} 40^{\circ}=\frac{\sqrt{3}}{2}$
Solution:
To prove: $3 \sin 40^{\circ}-\sin ^{3} 40^{\circ}=\frac{\sqrt{3}}{2}$
Taking LHS,
$=3 \sin 40^{\circ}-\sin ^{3} 40^{\circ} \ldots$ (i)
We know that
$\sin 3 x=3 \sin x-\sin ^{3} x$
Here, x = 40°
So, eq. (i) becomes
$=\sin 3\left(40^{\circ}\right)$
$=\sin 120^{\circ}$
$=\sin \left(180^{\circ}-60^{\circ}\right)$
$=\sin 60^{\circ}\left[\because \sin \left(180^{\circ}-\theta\right)=\sin \theta\right]$
$=\frac{\sqrt{3}}{2}\left[\because \sin 60^{\circ}=\frac{\sqrt{3}}{2}\right]$
= RHS
∴ LHS = RHS
Hence Proved