Prove that:
(i) $\frac{1}{1+x^{a-b}}+\frac{1}{1+x^{b-a}}=1$
(ii) $\frac{1}{1+x^{b-a}+x^{c-a}}+\frac{1}{1+x^{a-b}+x^{c-b}}+\frac{1}{1+x^{b-c}+x^{a-c}}=1$
(i) Consider the left hand side:
$\frac{1}{1+x^{a-b}}+\frac{1}{1+x^{b-a}}$
$=\frac{1}{1+\frac{x^{a}}{x^{b}}}+\frac{1}{1+\frac{x^{b}}{x^{a}}}$
$=\frac{1}{\frac{x^{b}+x^{a}}{x^{b}}}+\frac{1}{\frac{x^{a}+x^{b}}{x^{a}}}$
$=\frac{x^{b}}{x^{b}+x^{a}}+\frac{x^{a}}{x^{a}+x^{b}}$
$=\frac{x^{b}+x^{a}}{x^{b}+x^{a}}$
$=1$
Therefore left hand side is equal to the right hand side. Hence proved.
(ii)
Consider the left hand side:
$\frac{1}{1+x^{b-a}+x^{c-a}}+\frac{1}{1+x^{a-b}+x^{c-b}}+\frac{1}{1+x^{b-c}+x^{a-c}}$
$=\frac{1}{1+\frac{x^{b}}{x^{a}}+\frac{x^{c}}{x^{a}}}+\frac{1}{1+\frac{x^{a}}{x^{b}}+\frac{x^{c}}{x^{b}}}+\frac{1}{1+\frac{x^{b}}{x^{c}}+\frac{x^{a}}{x^{c}}}$
$=\frac{1}{\frac{x^{a}+x^{b}+x^{c}}{x^{a}}}+\frac{1}{\frac{x^{b}+x^{a}+x^{c}}{x^{b}}}+\frac{1}{\frac{x^{c}+x^{b}+x^{c}}{x^{c}}}$
$=\frac{x^{a}}{x^{a}+x^{b}+x^{c}}+\frac{x^{b}}{x^{b}+x^{a}+x^{c}}+\frac{x^{c}}{x^{c}+x^{b}+x^{c}}$
$=\frac{x^{a}+x^{b}+x^{c}}{x^{a}+x^{b}+x^{c}}$
$=1$
Therefore left hand side is equal to the right hand side. Hence proved.