Prove that

Question:

Prove that $\frac{1}{10 !}+\frac{1}{11 !}+\frac{1}{12 !}=\frac{145 !}{12 !}$

 

Solution:

To Prove :

$\frac{1}{10 !}+\frac{1}{11 !}+\frac{1}{12 !}=\frac{145}{12 !}$

Formula : $n !=n \times(n-1) !$

$L . H . S .=\frac{1}{10 !}+\frac{1}{11 !}+\frac{1}{12 !}$

$=\frac{12 \times 11}{12 \times 11 \times(10 !)}+\frac{12}{12 \times(11 !)}+\frac{1}{12 !}$

$=\frac{132}{12 !}+\frac{12}{12 !}+\frac{1}{12 !}$

$=\frac{145}{12 !}$

$=\mathrm{R} \cdot \mathrm{H} \cdot \mathrm{S} .$

$\therefore \mathrm{L} \cdot \mathrm{H} \cdot \mathrm{S} .=\mathrm{R} \cdot \mathrm{H} \cdot \mathrm{S} .$

Conclusion: $\therefore \frac{1}{10 !}+\frac{1}{11 !}+\frac{1}{12 !}=\frac{145}{12 !}$

 

Leave a comment