Question:
Prove that $1+2+2^{2}+\ldots+2^{n}=2^{n+1}-1$ for all $n \in \mathbf{N}$.
Solution:
Let $\mathrm{p}(n): 1+2+2^{2}+\ldots+2^{n}=2^{n+1}-1 \forall n \in \mathbf{N}$
Step I: For $n=1$,
$\mathrm{LHS}=1+2^{1}=3$
$\mathrm{RHS}=2^{1+1}-1=2^{2}-1=4-1=3$
As, $\mathrm{LHS}=\mathrm{RHS}$
So, it is true for $n=1$.
Step II : For $n=k$,
Let $\mathrm{p}(k): 1+2+2^{2}+\ldots+2^{k}=2^{k+1}-1$ be true $\forall k \in \mathbf{N}$
$\mathrm{LHS}=1+2+2^{2}+\ldots+2^{k}+2^{k+1}$
$=2^{k+1}-1+2^{k+1} \quad($ Using step II $)$
$=2 \times 2^{k+1}-1$
$=2^{k+1+1}-1$
$=2^{k+2}-1$
$\mathrm{RHS}=2^{(k+1)+1}-1=2^{k+2}-1$
As, LHS = RHS
So, it is also true for $n=k+1$.
Hence, $1+2+2^{2}+\ldots+2^{n}=2^{n+1}-1$ for all $n \in \mathbf{N}$.