Prove $\cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13}=\cos ^{-1} \frac{33}{65}$
Let $\cos ^{-1} \frac{4}{5}=x$. Then, $\cos x=\frac{4}{5} \Rightarrow \sin x=\sqrt{1-\left(\frac{4}{5}\right)^{2}}=\frac{3}{5}$.
$\therefore \tan x=\frac{3}{4} \Rightarrow x=\tan ^{-1} \frac{3}{4}$
$\therefore \cos ^{-1} \frac{4}{5}=\tan ^{-1} \frac{3}{4}$....(1)
Now, let $\cos ^{-1} \frac{12}{13}=y .$ Then, $\cos y=\frac{12}{13} \Rightarrow \sin y=\frac{5}{13}$.
$\therefore \tan y=\frac{5}{12} \Rightarrow y=\tan ^{-1} \frac{5}{12}$
$\therefore \cos ^{-1} \frac{12}{13}=\tan ^{-1} \frac{5}{12}$....(2)
Let $\cos ^{-1} \frac{33}{65}=z$. Then, $\cos z=\frac{33}{65} \Rightarrow \sin z=\frac{56}{65}$.
$\therefore \tan z=\frac{56}{33} \Rightarrow z=\tan ^{-1} \frac{56}{33}$
$\therefore \cos ^{-1} \frac{33}{65}=\tan ^{-1} \frac{56}{33}$....(3)
Now, we will prove that:
L.H.S. $=\cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13}$
$=\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{5}{12}$ $[$ Using $(1)$ and $(2)]$
$=\tan ^{-1} \frac{\frac{3}{4}+\frac{5}{12}}{1-\frac{3}{4} \cdot \frac{5}{12}}$ $\left[\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\right]$
$=\tan ^{-1} \frac{36+20}{48-15}$
$=\tan ^{-1} \frac{56}{33}$
$=\tan ^{-1} \frac{56}{33}$ [by (3)]
$=$ R.H.S.