Question:
$\frac{1}{\sqrt{7-6 x-x^{2}}}$
Solution:
$7-6 x-x^{2}$ can be written as $7-\left(x^{2}+6 x+9-9\right)$
Therefore,
$7-\left(x^{2}+6 x+9-9\right)$
$=16-\left(x^{2}+6 x+9\right)$
$=16-(x+3)^{2}$
$=(4)^{2}-(x+3)^{2}$
$\therefore \int \frac{1}{\sqrt{7-6 x-x^{2}}} d x=\int \frac{1}{\sqrt{(4)^{2}-(x+3)^{2}}} d x$
Let $x+3=t$
$\Rightarrow d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{(4)^{2}-(x+3)^{2}}} d x=\int \frac{1}{\sqrt{(4)^{2}-(t)^{2}}} d t$
$=\sin ^{-1}\left(\frac{t}{4}\right)+C$
$=\sin ^{-1}\left(\frac{x+3}{4}\right)+C$