$\frac{x+2}{\sqrt{4 x-x^{2}}}$
Let $x+2=A \frac{d}{d x}\left(4 x-x^{2}\right)+B$
$\Rightarrow x+2=A(4-2 x)+B$
Equating the coefficients of x and constant term on both sides, we obtain
$-2 A=1 \Rightarrow A=-\frac{1}{2}$
$4 A+B=2 \Rightarrow B=4$
$\Rightarrow(x+2)=-\frac{1}{2}(4-2 x)+4$
$\therefore \int \frac{x+2}{\sqrt{4 x-x^{2}}} d x$ $x=\int \frac{-\frac{1}{2}(4-2 x)+4}{\sqrt{4 x-x^{2}}} d x$
$=-\frac{1}{2} \int \frac{4-2 x}{\sqrt{4 x-x^{2}}} d x+4 \int \frac{1}{\sqrt{4 x-x^{2}}} d x$
Let $I_{1}=\int \frac{4-2 x}{\sqrt{4 x-x^{2}}} d x$ and $I_{2} \int \frac{1}{\sqrt{4 x-x^{2}}} d x$
$\therefore \int \frac{x+2}{\sqrt{4 x-x^{2}}} d x=-\frac{1}{2} I_{1}+4 I_{2}$ ...(1)
Then, $I_{1}=\int \frac{4-2 x}{\sqrt{4 x-x^{2}}} d x$
Let $4 x-x^{2}=t$
$\Rightarrow(4-2 x) d x=d t$
$\Rightarrow I_{1}=\int_{\sqrt{t}}^{d t}=2 \sqrt{t}=2 \sqrt{4 x-x^{2}}$ ...(2)
$I_{2}=\int \frac{1}{\sqrt{4 x-x^{2}}} d x$
$\Rightarrow 4 x-x^{2}=-\left(-4 x+x^{2}\right)$
$=\left(-4 x+x^{2}+4-4\right)$
$=4-(x-2)^{2}$
$=(2)^{2}-(x-2)^{2}$
$\therefore I_{2}=\int \frac{1}{\sqrt{(2)^{2}-(x-2)^{2}}} d x=\sin ^{-1}\left(\frac{x-2}{2}\right)$ ...(3)
Using equations (2) and (3) in (1), we obtain
$\int \frac{x+2}{\sqrt{4 x-x^{2}}} d x=-\frac{1}{2}\left(2 \sqrt{4 x-x^{2}}\right)+4 \sin ^{-1}\left(\frac{x-2}{2}\right)+\mathrm{C}$
$=-\sqrt{4 x-x^{2}}+4 \sin ^{-1}\left(\frac{x-2}{2}\right)+\mathrm{C}$