Prove

Question:

$\sqrt{a x+b}$

Solution:

Let $a x+b=t$

$\Rightarrow a d x=d t$

$\therefore d x=\frac{1}{a} d t$

$\Rightarrow \int(a x+b)^{\frac{1}{2}} d x=\frac{1}{a} \int t^{\frac{1}{2}} d t$

$=\frac{1}{a}\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+\mathrm{C}$

$=\frac{2}{3 a}(a x+b)^{\frac{3}{2}}+\mathrm{C}$

Leave a comment