Prove

Question:

$\frac{1}{x+x \log x}$

Solution:

$\frac{1}{x+x \log x}=\frac{1}{x(1+\log x)}$

Let $1+\log x=t$

$\therefore \frac{1}{x} d x=d t$

$\Rightarrow \int \frac{1}{x(1+\log x)} d x=\int_{t}^{1} d t$

$=\log |t|+\mathrm{C}$

$=\log |1+\log x|+\mathrm{C}$

Leave a comment