Prove

Question:

$\frac{1}{x(\log x)^{m}}, x>0$

Solution:

Let $\log x=t$

$\therefore \frac{1}{x} d x=d t$

$\Rightarrow \int \frac{1}{x(\log x)^{m}} d x=\int \frac{d t}{(t)^{m}}$\

$=\left(\frac{t^{-m+1}}{1-m}\right)+\mathrm{C}$

$=\frac{(\log x)^{1-m}}{(1-m)}+\mathrm{C}$

Leave a comment