Prove

Question:

$\frac{1}{x-\sqrt{x}}$

Solution:

$\frac{1}{x-\sqrt{x}}=\frac{1}{\sqrt{x}(\sqrt{x}-1)}$

Let $(\sqrt{x}-1)=t$

$\therefore \frac{1}{2 \sqrt{x}} d x=d t$

$\Rightarrow \int \frac{1}{\sqrt{x}(\sqrt{x}-1)} d x=\int \frac{2}{t} d t$

$=2 \log |t|+\mathrm{C}$

$=2 \log |\sqrt{x}-1|+\mathrm{C}$

Leave a comment